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ABSTRACT

Linear and nonlinear studies are made of two-dimensional free-surface

flows under gravity, in which a disturbance is caused to an otherwise-uniform

stream by a distribution of pressure over the free surface. In general, such

a disturbance creates a system of trailing waves. However, there are special

disturbances that do not, and some categories of such disturbances are

discussed here. This work has potential applications to design of splash-less

ship bows.
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SIGNIFICANCE AND EXPLANATION

One of the important problems of modern ship hydrodynamics concerns the

flow at the extreme bow. In particular, reduction and, if possible,

elimination of the splash, and resulting splash drag is of great interest.

In the present paper linear and nonlinear studies are made of two-

dimensional flows, in which an otherwise uniform stream is disturbed by a

distribution of pressure over the free surface. It is found that some

families of pressure distributions do not generate waves. These wave-less

flows generate candidate shapes for splash-less bows.

; . The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the authors of this report. -
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WAVE-LESS FREE-SURFACE PRESSURE DISTRIBUTIONS

J.-M. Vanden-Broeck' and E. 0. Tuck"

l.Zntroduction

One of the Important problems of modern ship hydrodynamics

concerns the flow at the extreme bow. In particular.

prediction and, if possible, elimination of the splash, and

resulting splash drag component Is of great interest. It

appears (c.f. refs [1,21) that one of the roles of a bulbous

bow to to effect just such an elimination (or at least

reduction In magnitude) of the splash drag under suitable

conditions of speed and loading.

In previous research 13,4 the present authors have

considered fundamental questions associated with a

two-dimensional model for such bow flows. That work suggested

that, for a given bow shape, splash-free solutions may not

exist. However, only special (specifically non-bulbous) bow

shapes were used In the previous studies. The possibility

exists that, by considering suitable famllee of bow shapes,

4

one could Identify a special shape having the splash-free

property. In the linearised case, such shapes have been

considered by Schmidt (5).
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In the present article, we approach this problem in an

indirect manner. If such a special bow exists, and if one

computes the pressure exerted on it by the water, then one can

.replace the original body by an artificial prescribed pressure

distribution over the free-surface. Conversely, if one starts

with a given free-surface pressure distribution, the

streamlines generated will define a candidate bow shape.

The obvious difficulty with this approach is that, in

general, such pressure distributions generate a train of waves

downstream, and we are (ultimately) looking for flows that are

not only splash-free, but also wave-free. However, it is well

known (c.f.16], p.404) that in two dimensions there exist

special pressure distributions whose downstream wave amplitude

ti zero, and our main purpose here is to enumerate and discuss

such special cases.

In particular, suppose we consider a family of pressure

distributions that vanish for x > 0, and tend to a positive

constant value as x - -.. This pressure will in general

correspond to a semi-infinite "stern" profile having finite

draft at x - -a, and producing a train of waves downstream at

x a +f. Within this family there may be one or more special

members for which the downstream wave amplitude is zero. Since

there are no waves, the radiation condition does not apply to

such special solutions, and the flow direction can be reversed,

so generating a semi-infinite 'bow' flow. This flow possesses

neither a splash nor (upstream) waves, and hence is precisely

of the type desired.

s.
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The above discussion proceeds without any consideration of

linearisation. However, few demonstrations have been made of

non-linear free-surface flown without downstream waves. and It

Is not entirely obvious that they exist, although the numerical

evidence (7,81 Is strong, and the approximate non-linear theory

of Tulin (9) can be interpreted as providing indirect analytic

confirmation.

Here we first discuss the linearised case in some detail,

enumerating some families of wave-less pressure distributions,

and computing the corresponding free-surface contour. This

contour can then be replaced by a fixed body, but only as an

-* approximation when that body has a small stream-wise slope

everywhere, in order that the generating pressure can be small

to Justify linearisation. Some of the results suggest bulbous

character,.but of course a true bulb can never be attained with

such a restriction on the body's slope. These linear results

can be viewed as an Inverse re-formulation of the theory of

Schmidt (SI.

We then solve the non-linear problem by a perturbation

-t mprocedure, in which the linearised solution is viewed as the

first term In an asymptotic expansion with respect to some

small parameter 4. Thus,. measures either (and both) the

.z. body's streamwise slope and the size of the pressure

distribution that generates it. In principle, providing we

adopt a careful Inverse formulation with the velocity potential

as Independent variable, any number of terms in the asymptoticII expansion In powers of a can be computed, for continuous

pressure distributions. We provide here some 2nd-order

%,
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numerical results, and hlgher-order results seem to be not hard

to obtain. This is. however, not true If the input pressure

possesses step-function discontinuities, because singulartties

occur who@s degree increases with the power of e.

An alternative approach to non-linear free-surface

solution is via exact inverse methods, c.f. (10.111. That is,

it is possible to write down a specification for the flow in

i% ~which all requisite equations (including the non-linear

free-surface condition) are satisfied exactly. This has not in

the past proved a very useful technique because of the

unrealistic nature of the streamlines generated. However, the

extra freedom obtained by allowing a non-zero free-surface

pressure, enables us to get a little closer to practical

applicablility. The price paid for this is that we cannot

-expect the inversely-obtained pressure distributions to be

exactly zero anywhere on the free surface. The best we can do

to to cause the pressure to be very small over a portion of the

I streamline that ts a candidate for a true "free" surface.

%u %'
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2. W~eak Pressure Distributions

Suppose that the only disturbance to a uniform stream of

unit magnitude in the +x-direction consists of a small

departure P00) from the equilibrium atmospheric value of the

free-surface pressure. If P~x) is sufficiently small, and we

make the usual assumptions (121 of classical linearised

vAter-wave theory we find (c.f. [131) that the free-surface

elevation is y * r(x). where

-~x -o P1'L)Kx-( d(. (2.1) 1

The kernel function K(2c) is the wave elevation due to a unit-

step pressure, namely

r2cos X-1.x
K(x) *-.f(x) + (2.2)

where

f(z) -Ci(IxI)oin x - s(Ixt)coo 2c @an x (2.3)

is the odd auxiliary function ((141, p.232) of the sine and

cosine Integrals.

Note that we have non-dimensionalised so that not only is

the free stream of unit magnitude, but the acceleration of

graityand the density are both also of unit magnitude. In

presurescale of magnitude pU2  where U, a and p are the

&Ivalues of theme quantities. Since the wavelength of

linearised waves is 2wU2Ig. this' means that in the precent

7P.
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non-dimensional framework, their length Is 2., as is clear from

the term in con x in (2.2).
P

In fact, since f(x) tends to zero at infinity, as n -

N we have

A(X) - -P(--) + P'(012 coo (x-()-ld(

-P(+-) +2J P()cos(x-)d(. (2.4)

However, from now on we assume (without. loss of generality)

that P(+w) w 0, i.e. that the pressure is allowed to return to

atmospheric far downstream, and hence that the mean free-

surface level downstream is defined to be the level at which

y a 0. In that case, (2.4) reduces to

n~)- 12JP'(C)cos ( d(I coo x + (2J P'tCOsin C d(J sin x

(2.5)

i.e. there is a wave at x + a., whose magnitude and phase are

determined by the pressure distribution P(x). This wave

disappears if and only if

P.I(x)coo x dx - 0 (2.6)

and

s(x) min x dx - 0. (2.7)

Any pressure distibrution P(x) satisfying (2.6) and (2.7) will

be described as "wave-less".

r -6-
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For example, suppose P(x) is step-wise constant, i.e.

P(x) - e - constant, xj.1 < x < xj (2.8)

for soes set of points xJ, Jm0,l.2.... ,N, where we may take

o , - and xN , 0. Then the pressure gradient is a

collection of Dirac 6-functions, I.e.

N
P'(X) r E (Pj+i-Pj)6(x-xj) (2.9)

J,,

where PN+j a 0. Now (2.6) and (2.7) require

N N
- (Pj.,- Pj)coe xj - E (Pj., - Pj)sin xj - 0. (2.10)

jul jet

We can fix one of the constants Pj say PA; there are then

(2N-2) free parameters P, Ps,..- PN, and x1 tx 2 ,...,XN_,,

and just two equations restricting them. Clearly there is no

wave-loes pressure if N a 1. This simply confirms that a

(single) step-function pressure always generates a trailing

wave of non-zero amplitude.

If 9 - 2, there are as many equations as unknowns and a

wave-less pressure Is possible. The specific form taken by

"V (2.10) is

(Pt-Pt)cos x, - P& (PI-Pt)SIn x- 0 (2.11)

Thus, x1  -f -21, -3r,..., so that the step length must be

an integer multiple of w. If that integer in odd, then P, 0

and F * P1/2. i.e. the pressure P(x) consists of a jump at

x a x& to exactly half of its (non-zero) upstream value,

followed by a jump to zero at the origin. In practice, we are

-7-, , ,.. , , .,?,',.-""'.,.',.% .'," , -"*, ,', ;'" . ..--"-".. ' -- -. . . .,. . , . -. " * -" ,", - - ." . . . . . . . . ." '-".-,".



mainly interested in the shortest step, with x, - -f, which

corresponds to a Froude number (based on the step ienRth) of

- .564.

On the other hand, the solutions with x, - -2v.

-4w, -6i,... must have P, u 0, i.e. correspond to a pressure

distribution that vanishes outside the finite segment

x < x < 0 and is constant within that segment. The existence

of such simple finite wave-less pressures is well known; for

example, the most important case x, a -2r, with a Froude

number of .399, was discussed by Lamb (61 and used by Schwartz

%... The absence of waves in this case is easy to understand

intuitively, since there is exactly one wavelength (2r)

between beginning and end of the pressure distribution. Since

these ends generate exactly equal and opposite waves,

destructive interference is possible. In fact, a similar

,, argument also explains the semL-infinite case x, - -f, where

the step length is exactly half a wavelength. Now, in view of

d$ the fact that the pressure steps down by a factor of 1/2 at

'C'01 both ends, the waves produced by the ends are exactly equal in

magnitude and sign, but now are shifted by a half-wavelength,

so that again destructive interference occurs.

, .,: In summary, pressure distributions consisting of just two

Ldistinct steps can generate wave-less free surfaces, providing

P Nthe distance between the steps is an Integer multiple of the

L half-wavelength w. The "shortest" such wave-less pressure has

640 a step-len8th of r, i.e. one half-wavelength, and corresponds

_ -8-
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to a semi-infinite pressure distribution with constant

arbitrary upstream pressure, and a Ptep to exactly half the

upstream pressure. The case where the step length is 2w, i.e.

- . a full wavelength, corresponds to zero upstream pressure, and

constant arbitrary pressure on the step.

The actual free-surface shape generated by these two

pressures is illustrated in Figures 2.1 and 2.2 respectively.

In the general case where the pressure is given by (2.8), the

free-surface elevation is given by.(2.1) as

N
% n(x) - -P,+ " (Pj+&-Pj)K(x-xj) (2.12)

Jul

Since the basic kernel function K Is easily computed, this

provides a rapid method for evaluating linearised solutions.

not only for the present case where P(x) Is exactly a set of N

steps, with N small, but also for quite general P(x), as a

numerical procedure in which (2.8) Is an approximation for

large N. Note, however, that wherever P(x) possesses a finite

jump discontinuity, n(x) is finite but its derivative, the

free-surface slope n'(x) is infinite. Specifically, if P(x)

jumps by AP at x - 0, then near x a 0 we have

%"nx) n0 AP
A.(x) - nO) x losgxI + 0(x) (2.13)

U

Figures 2.1 and 2.2 show this phenomenon as locally-vertical

% .free surfaces at the points where the pressure jumps.4%

If we now turn to the case N - 3, since there are now two

*- more parameters than equations, we may expect to obtain a

, : 2-parameter continuous family of wave-less solutions.

?4 Equations (2.10) now state

%'-9-
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.(PI-P 1 )cos xt (P,-Pl)cos x - PS " 0

and

-(zp-F)sin xj+ (P 3-Pz)sin x z a 0 (2.14)

which may be 'solved' for any two of Pg, PF, PS, given the

third, and the step locations x1, x2. This solution may be

expressed in the form

?s, P:Fa:?a "s5+5,-si :s+6 :s (2.15)

where susin(x,-x,). stasin(x,) and s*asin(xz).

The most useful examples with N = 3 art those with

-w < a, < 0, since a step length laess than v was not achievable

for N - 2. Figure 2.3 shows (solid curve) a typical example in

this category, namely that for x, a -1. xg - -1/2. The

pressure stoeps are in the ratios Ps:Fz:Pl:- 3 .08 :4.0S in this

example. If we keep xg m -1. and vary xI in the range

% -1 < xx < 0, the free-surface shape does not change very much.

It is Interesting to consider the effect of making x, even

closer to zero. Then we find that (with Pg normalised to

unity) Pg becomes large and negative, while Pg becomes largeB!' and positive, comparable with -P2. This behaviour corresponds

to a combination of a step function and a dipole in pressure,

i.e. to

J-12-
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Linearized free surface n(x) generated by wave-less pressures. q

P(x) that vary only in -14C x 4 0. The solid curve has 3 steps
in pressure, the dashed curve has a continuous sinusoidally-varying |
pressure.
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P(x) - 1-H(x) -6*(x) (2,16) .

where H(x) to the unit step function. Thus, from (2.1), we

have

n(x) a -1 - K(x) - K"(x) (2.17)

- -1 -(2cos x-1) - (-2cosx)

- . as a .

Of course. this limiting solution is very singular at the

origin, and for example the free-surface elevation becomes ,

unbounded like l/x, but It Indicates the possibility of

wave-less pressure distributions whose domain of variation ts

of vanishingly-small length.

The logarithmic singularity (2.13) In the free-surface

slope caused by jumps in pressure Is barely acceptable in the

linearized theory, and becomes (as we shall see) quite

. unacceptable if the analysis is extended to include

non-lnearity. It is therefore desirable to consider families

of continuous pressure distributions. The simplest such

example Is a linear "pressure ramp"

i !P(x) - tX/x , < •x < 0 '

Sx > 0 , (2.16)

leatisfies(2.7) if x, - -2., -4., -61, ..... Figure 2.4 shows

4-Sthe fr**-ourface shape at x, -2w. This curve was in fact

computed using (2.12) with N * 40, which gives 3-4 figure %.

%
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.., A useful one-parameter family of continuous pressures is

given by

[ w -x < x < 0

- , 1- +'si 2x < < (0
0 x > 0

which reduces to (2.18) If P2 - 0, but ts wave-less for all

x, < 0 It

2S -L (2.19)

figure 2.3 showe (dashed curve) results at X1  -1. The solid

and dashed curves of this figure contrasl discontinuous and

continuous wave-less pressures for the same value of xa, and

,5clearly the smoother pressure gives a smoother but otherwise

quite similar free surface.

If one demands an even greater degree of smoothness, then

for example

is a1:~)- [:slina[x , <~ x < (220
10 0 x > 0 (2.20)

to a continuous pressure distribution with continuous

derivative, and is wave-less if x1 - -3w, -5t, .... Figure

2.5 shows results at xi -3w.

-16-
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0.2

0

-0.2-

0

-0.8-

- '4Fig. 2. S

Linearized free surface ri(x) generated by a wave-less pressure
P(x) that is continuous and has continuous first derivative,

4~, varying uinusoidally on the interval -3ir < x '4 0.
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S3. Some propere lee and lnterpretatione.

The linearised free-surface flow produced by a wave-less

pressure distribution has some interesting special properties.

In particular. symmetrical wave-ler pressures produce

symmeCrcal flows, in the following sense. Suppose x - xs is a

point of symmetry of a wave-less pressure P(x). such that

P(x s + X) - P(x s - X) (3.1)

- for all X. Then x - xg Is also a point of symmetry of the

free-surface elevation n(x) produced by this pressure. i.e.

A(xo + X) = w(xs - X) (3.2)

rigure 2.2 illustrates this property, with x s  - as the

point of symmetry.

A similar result applies to what we might call *anti-

symmetric" wave-less pressure distributions, but ts most

directly expressed in terms of derivatives. That is, If x - x.

ts a point of symmetry of the pressure gradient. such that

P *lX6 + X) 0 P'Cx s - X) (3.3)

for all X, then it Is also a point of symmetry of the free-

surface slope, i.e.

n *(xo + X) - n(xs - X) , (3.4)

-18-
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Upon Integration, we can re-phrase this anti-symmetry property % .4

to state that

,. P(x X) - 1(xo) - P(s) - P(x. - X) (3.5)

implies that

"(K X) -n(11*) an(ul*) -i(Xg- X) (3.6)

Figures 2.1. 2.3, 2.4 and 2.5 all illustrate this property, for

various values of xg.

It is important to emphasize that these properties hold

only for wave-less pressure distributions. It Is obvious that

solutions with waves cannot obey such symmetry conditions,

since the radiation condition demands that the waves occur only

at x a +0, and not at x a -e. The symmetry results can be

proved by noting that K(x) in (2.2) can be split Into even and

*. odd parts, but that the even part (cos x - 1/2) contributes at

most a constant to A, for wave-less pressures P(x). On the

other hand, the odd part of K(X) nessarily generates (for any

*P(x)) solutions n(x) satisfying the symmetry conditions.

Another almost self-evident property of wave-less

* pressures is that they are reversible. That is, If P(x)

generates n(x), then P(-x) generates n(-x). In effect, we have

simply reversed the direction of the free stream at infinity. p

and, with It, the whole flow.

Again, this property can be proved formally for the

linearised solution by separating K(x) into even and odd parts.

- 19- :
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It is obviously false for wave-generatinR pressures, since the

waves due to P(X) must lie downstream, which means that those

due to PC-x) would lie upstream If reversibility held. In

fact, this reversibility property holds not only for weak

pressures P(x) for which lineariestion is justified, but also

In the fully-non-linear case.

Once a flow due to a given pressure distribution P(x) has

been computed, It may be re-interpreted as that produced In the

presence of a certain body. That is, the computed curve

y n(x) is a streamline, and part or all of It may be replaced

by a fixed impermeable boundary. In particular, suppose

P(X) - 0 for x < XL and for x > X 1 , but P(x) 0 0 for

XL 4C K < ag. Then the flow generated by this P(x) is the same

as that past a body with the equation y a n(x). xL < x < aR

with & free surface at atmospheric pressure In x < xL and

x > Kg. This Interpretation'holds whether or not the pressure

1(z) is wave-less.

In this way we can provide an lnors, solution to problems

Involving ship-like bodies. Examples such as that in Fig. 2.2

where P(n) Is non-siero only over a finite segment appear at

first glance to be the most relevant. However, pressures P(x)

that are non-zero on a seMI-infinite segment, such as that used

for Fig.2.l, generate flows that can be Interpreted directly as

*11those near the stern of a ship, In general, such stern flows

generate downstream waves. However, In the special case where

P(x) is wave-less, the above reversibility property applies,

and allows an additional interpretation as a flow near the bowI of a ship.

-20-
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*Of course, no guarantee io available that the "body" shapes

y *nO') so generated will be particularly ship-like, and

flnlto-lonath bodies, like that of Fig. 2.2 tend to be very far

from ship-Ilke. On the other hand, the semi-infinite body

shown in (for example) Fig. 2.5 is not unlike a bulbous bow,

and the inverse technique appears to be quite promising if

* onfined to local flow properties at the bow or stern.

In making this Inverts Interpretation of the linearized

results of Section 2, we must not forget that these art

approximations, and are formally only valid when P(x) is so

wak that the fre-surface slope nl(x) 
is everywhere small. if

7 a tn(x) is now Interpreted as the surface equation of a

ship-lke body, this places severe restrictions on the

applicability of the results. Fortunately, the inverse

Interpretation Is not restricted to linearised solutions, and

* we now turn our attention to the full non-linear problem, whose

solutions allow finite n'(x), and hence finite slopes In the

inversely-generated body surface.

.4

V.



4. Leae-Weak Presures.

If a Is a measure of the size of the pressure P(x), then

the results of Section 2 apply in the limit as a - 0, and

provide (4) estimates of the free-ourface shape, i.e. neglect

all terms of 0(42) and smaller. It is now natural to seek an

expansion in powers of e, commencing wLth the O(s) terms

already worked out.

However, for a number of reasons, it is inconvenient

(sometimes impossible) to carry out this analysis for a

pressure P that is given as a function of the space variable

x. Indeed, if the pressure is large enough, there may exist no

such single-valued functional representation, since there may

be more than one point on the free surface corresponding to a

given value of x. It is preferable to represent the pressure

P as a function of a variable that changes in a strictly

monotone-increasing manner along the free surface.

Such a variable ts the velocity potential o. That is. we

now suppose that the free-surface pressure P() is a given

function of I. In the present non-dimensionalization, the

undisturbed stream corresponds to s a x, so that this

representation is identical, with P(o) a P(x), to that used in

Section 2, to the order of approximation being used in that

section. All results of Section 2 can now be carried over,

with x replaced by o.

We now consider 0(st) and higher perturbations. At the

same time, it is convenient to suppose that the pressure P

-22-
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itself can be modified as we expand to such higher orders.

Thus we write

P(*) eps(*) +42P'(o) + elp,(6) **....(4.1)

Since e was scaled to unity in Section 2, in fact the results

of that section correspond to PI(s) a P(x).

If z x+iy, and f - * + i* is the complex velocity

potential, then we consider z - z(f) and expand

ZM(f) f + ezs(f) + e'z,(f) + e'sm(f) +.... (4.2)

The free surface corresponds to v a 0, and the (scaled) dynamic

free-surface condition io (with S a 1, U - 1, p - 1)

S* Ia,(f)l-V/2 + y a 1/2 (4.3)

Upon substitution of (4.1) and (4.2) and collecting powers of

a, we find that for all J=1.2,3 ........

6 j+pi - xj' + yj - 0 (4.4)

where all quantities are evaluated on v u 0, the prime denotes

*/l), and

P, * 0 (4.5)

Pa , .XI ,y (4.6)
2 2

PS " 3x,'xl - yj ya + 2x y.' 2x 1 'S (4.7)

P4 " 3x 1tx 3  " Y2 jYa to 2 " Ya 2

.. -23-
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- " " + 4x, 'y y, 2x, y, ,

"x* + 1 (4.8)

etc. Thus, at all orders of approximation J, we have the same

type of boundary condition (4.4) the only complication at

' higher order heing the manner in which the "equivalent linear"

pressure Pj is determined from earlier terms In the

expansion.

For j * 1, (4.4) and (4.5) are equivalent to the usual

linearized free-surface boundary condition, and all results of

Section 2 are available to yield solutions of this problem.

Note that in the present notation.

-y1 (*) - y(*) (4.9)

In fact, we need no more information from Section 2 than n(x)

(with x replaced by ), sine* (4.4) and (4.9) imply

'-..C *'( ) - a(* ) + v (.) (4.10)

, ~If we turn to the 2nd-order terms j * 2, It Is immediately

apparent that step-function discontinuities In the Input P,(*)

ore unacceptable, since they lead to (c.f.(2.13))

loEgarithmically-infinite free-surface slope,and via (4.6) to

"log equared" singularities in the 2nd-order pressure pa. and

hence to an unbounded 2nd-order free-surface displacement y,.

This problem compounds itself at higher order, and one must

suspect that no solution exists if P(o) possesses a step

discontinuity.

_%*
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This is also a conclusion one ts drawn to by direct

consideration of the non-linear boundary condition (4.3),

Irrespective of any form of asymptotic expansion such as (4.2),

and appears to be in conflict with the fact that Schwartz (7)

claims to have found a non-linear numerical solution for such a

pressure distribution. However, it is probable that Schwartz's

numerical solution is not sufficiently accurate near the

P. singular points to display this difficulty.

In any case, we choose to require that P (o) be a

continuous function, typically (2.18), (2.19) etc. For

example, If P1 is continuous but its derivative P 1 ' possesses a

step-function discontinuity, then y1 ' - n,' is bounded and

continuous, and hence so is the second-order pressure p2. We

therefore expect no trouble at any order of approximation, and

by Implication, expect that the full non-linear problem does

have a solution.

The symmetry properties of the linear wave-less solutions

as discussed in Section 3, now play an important role in the

non-linear theory. Suppose for example that Pj(e) ts wave-

less and symmetric about some point 4 - 09. Then, as we have

seen, so Is n(o) - yl(e), and thus so Is xj'(o). Hence

PR - Pz Is symmetric, and a symmetric second-order solution

exists If the second-order Input PE is taken as symmetric. A

similar conclusion applies at all higher orders, and we may

therefore expect to generate a fully non-linear symmetric

solution. Note that in such a case P 2 t not arbitrary and

cannot be set to zero; It is needed In order to cancel the

waves at second order.

-25-
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The case of "anti-symmetric" pressures is somewhat more

interesting. Now If the pressure gradlent P' is symmetric.

then so is the free-surface slope ' a y,'. Thus (3.6) implies

that Pa - P2 is eymmetric, and we can (indeed must) use a

symmetric 2nd-order input Px. Thus, at 2nd-order, the anti-
"'

symmetry property of the input pressure is necessarily

destroyed, and it appears that there exists no wave-less

non-linear anti-symmetric pressure distribution.

For example, suppose

{~~ ~ o, <.( -2v
Pt (0) " -*/2vr, -2v < o < 0
P C. - -/2, 2 , * > 0 (4.11)

0, >0

This is just the "ramp" pressure of (2.18), expressed in terms

*of o Instead of x, and evaluated In the wave-less case

x -2. Note that this pressure is anti-symmetric about

* - -W. This pressure can be used to compute xl(*) and y1().

the latter being as plotted for n(x) in Figure 2.4. Then we

-... can easily compute pa(e) from (4.6), and this Is given In

Figure 4.1, which veriftes that P() is symmetric about

i S -1. The complete second-order problem now has been reduced

to a linear problem, in which the free surface is disturbed by

a combination of the input second-order pressure PI(o), (which
-V

may or may not be present) and the computed pressure pa(C) as

- displayed in Figure 4.1, which must always be present.

If there is no input second-order pressure, i.e. if the

pressure is given by a simple ramp to at least 0(41) accuracy.

then waves must be generated. That is, by itself, the pressure

pa(*o) of Figure 4.1 does generate waves. If we demand a

U -26-
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Tte solidcuv is the secona-order presrep(*)corsndg

, so am input first-order pressure equivalent to Ihe linear ramp of
4 Pig. 2.4. The dashed curve is a wave-less analytic approximtion

4. .%

.to the solid curve for -2w % * < 0, given by eq,,ation (4.IS).
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wave-less solution at second order, we must Incorporate some

Input pressure P,(e) at second order, of such a nature and

magnitude as to cancel the waves generated by pz(.). The

symmetry principle demands that this input pressure must be

symmetric about o - -w, and there are many choices for Pg(*)

that are satifactory.

A rather attractive possibility Is to choose

P,(o) s -p,(e) (4.12)

In which cawe there Is no pressure distribution at all at

2nd-order, and hence no second-order flow. That is, without

further ado, we can assort that an Input pressure

pC.) * et(.) - e'pz(e) (4.13)

where P,() is gIven by (4.11) and palo) by Figure 4.1 produces

a wave-les flow field.

* I*

a a *z 1 (f) * 0(e') (4.14)

One difficulty of the assumption (4.12) is that since

ps(o) 0 0 in * > 0, the same applies to Pa(e). That is, there

Is no true free surface on which .p a 0, the input pressure

being non-sero everywhere.

Alternatively, a good choice for P2(e) is one that, while

remaining zero for > > 0 and generating exactly equal and

opposite waves to ps, also cancels pl(e) for -2v < * < 0, to as

-28-
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great an extent as possible. One such choice. found by trial

and orror,is

0.118 @in 3*/2 4 0.09 sin 0, -2v < * <0.

0 * otherwise

term of (4.15) generates the waves to cancel those of pa; the

second term io itself wave-lees, and the coefficient 0.09 is

simply chosen to match -P2 to p, as closely as possible. It Is

now quite straight-forward to ,compute the free-surface

elevation yz produced by the everywhere-small residual pressure

?g4Pg, and this In shown In Figure 4.2. Note the small

absolute size of y 2 , which suggests that these results may

retain validity up to quite large values of a.

The actual free-surface shape In physical-space

coordinates (x.y), is given by

x + 4 eic(*) + 0(42)

Y s ys(s) + say&(*) + 0(a 3). (4.16)

To obtain a result for y -y(x), consistently with error Oe)

we can treat (4.16) as a pair of parametric equations, with *

as a parameter. The small magnitude of ya(e) in the example of

Figure 4.2 means that (for moderate 4), the y-coordinate of the

free surface Is little changed by second-order effects In this

1.1example. However, the 0(e) correction to the x-coordinate is

not so small, and represents the most significant non-linear

modification. We return to this question in the following

section.

-29-
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The second-order contribution to the free-surface elevation, for
the case when the first-order input pressure is the linear ramp
of Pig. 2.4, and the second-order input pressure is as gives by
the dashed curve of Fig. 4.1, i.e. by equation (4.1S).
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S. Strens Pressure.

An exact Inverse method of solution of the present class of

problem is always available. That is, given any function z(f)

that is analytic in the lower half f-plane, we can use (3.3)

directly to compute the free-surfae pressure P(o). One way to

do this is to combine a uniform stream with singularities above

the free surface.

For example. suppose

8644

3(f) a f + 12 log(f-4i) + - (5.1)
fe-4-L1

If linearlsation (I.e. f a z) were legitimate, (5.1) could be

Interpreted as a stream plus a fnk at (0,4) and a dipole at

*(-4,12). However, the size of the coefficients In (5.1) makes

linearisation of doubtful value, even for qualitative purposes.

Figure 5.1 shows the streamline x+iy a z(*+i0) computed from

(5.1). Since we have scaled g a U - 1, and the "draft" of the

shape shown In Figure 5.1 Is 12., the draft-based Froude number

for this flow is (12w)" / 8 a .163. The shape shown is quite

like a typical bow.

The pressure P (obtainable from (3.3)) ts almost

hydrostatic, and is significant only for y < 0. Indeed, if

y > 0, then P/Ps < .008, where P, is the pressure at x -

The coefficients and singularity locations were In fact chosen

by trial and error so that this would be so. Many other

choices of the parameters in (5.1) led to a similar property,

and shapes having small pressure for sufficiently large o or x

can be constructed at any draft-based Proude number. However,

• , - - . , .. * * P,"..' , *...,.,.* ..* .. . . . . ., , , .*...* .. ..... ,.
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this procedure seems hard to carry through In any systematic

manner, and we turn to an alternative procedure based on the

linearized solution.

! a, Flows satisfying the exact free-surface condition (3.3) can

be constructed in a systematic manner by making use of the

results already obtained in the previous sections. For

example, suppose we set

z - f + ezi(f) (5.2)

(exactly), where z j (f) is the linear solution corresponding to

some input "seed" pressure P&(.). Then the flow (5.2) can be

S.-. considered to have been generated by-the free-surface pressure

... P(O) given exactly by

P() -ey(e) - + ex 1 '(e))'. (eye (e))'

A -(5.3)

Note that in order to generate the free-surface shape and

pressure P. we need only compute the linearised free-surface

elevation v%(x) with e-1, since then y,(o) - "(0), and

X(s) P,()n(.). We can then compute very rapidly a

complete family of exact non-linear solutions, by varying the

amplitude parameter e. The free-surface shape is given

parametrically by

xaO + eJ1P1 (e) n.)J do

y a en(o) (5.4)

As a varies, the y-coordinate simply scales in proportion, but

the actual shape of the free-surface distorts, because of the

non-proportlonal dependence of x on a.

-33-
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Figure 5.2 shows free-surface shpeos computed in this way

for various values of a, with the seed pressure P1 (e) given by

the simple ramp (4.11). Those curves are drawn true to scale,

and their non-linearity to confined by the large slopes.

However, the curve shown for a n I does not display large

47 slopes, and hence it in almost the same as Figure 2.4, since

S.linearization is not too much in error. As 4 increases, the

"downward bulb" at * - -5.5 becomes sharper, whereas the "upwrd

bulb" at * . -I (which is in Figure 2.4 exactly a reversed

Image of the downward bulb) is smoothed out.

-i Eventually, at about a a 3.1, the downward bulb aharpens

into & cusp, and for a values greater than this, non-physlcal

looped shapes are generated. The -distorted variation in the

x-coordinate now allows a non-single-valued y a y(n) free

surface, containing a point where the free surface is vertical,

and this actually happens for a values near to 3 in this

example.

For each separate value of a0 we must compute the actual

free-surface pressure P(.) by (5.3). Thus every curve shown in

Figure 5.2 corresponds to a different P(O). As the downward

bulb becomes sharper, the fluid velocity increases near the

corner, and hence the pressure P(s) decreases, until at the

value of a where the body is cusped, F . -. at the cusp.

Figure 5.3 (solid curves) repeats the free-surface shape of

Fig. 5.2 at a a 2, and shows the corresponding presure F,

plotted os a function of x.

li.

~-34-
Jo P .. '

k \ : : : : ... ... .. ... ... .. .. ..... ...........-- _. '.-...-..--



.. '

0001

2"-2

4 -4i V.

-55

.-- 9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

N%

.the linear ramp pressure of Fig. 2.4. for various values of
'Iparameter c measuring the megntude of the input pressure.

U
..... -35--.-

VP I 5 % % . % '.. • -- •% =" =" ,% % % " .. .- .- . % " .- " % % % %



.r ~ ww. . . . . . . . . . . .. . -. ."a . r. ":d - . '"- " ': :" . - - , ,, *. '.* : *. . ,. ,-. ,

'..,.

P ° --

-a-2

a,. 
. s..

,I'2

5 .-" . . . .' ' .-.-
- '. -

- , .- - - . .

P 0. 

.- " . . . . ." . -

-, -3 -

a, ... . - . , , ' _ ' - ' ' , , . " , . . . " . . . , " . ' ,- . - - . ' . . ' . . " " " . . " - . . . " - " " " - . . . . " . . , . ' . ' . : '



In fact it is. interesting to note that the present exact

procedure generates almost the same results as the 2nd-order

procedure (4.16). The only difference between (4.16) and (5.4)

Is the-term et yz(o) in the former, and we have indicated in

Section 4 that this term can be made quite small. That is, the

second-order accurate free surface computed at a a 2 using

(4.16), with P, given by (4.11) and P 2 by (4.15). is almost

Indistinguishable from that shown in Figure 5.3. However, the

pressure P(e) - eP, + s2Pz now vanishes exactly for all * > 0,

so that there Is a true free-surface present.

The present exact inverse method can be extended to take

account of both lIt And 2nd-order seed pressure. That is,

suppose instead of (5.2) we set

I - f + Gz 1 (f) + e
2
z 2 (f) (5.5)

where z1 (f) and z,(f) are lot and 2nd-order solutions generated

by Pt(o) and P,(e) respectively. Then this is also the exact

solution generated by the pressure

Io

-P( -eys(s) - s'y(e)

2

Figure 5.3 also shows (dashed) computations using (5.5), (5.6),

for a a 2, with P given by (4.11) and P 2 by (4.15). The

dashed and solid curves are generally close, although the

dashed downward bulb is significantly sharper. and hence the

pressure minimum is stronger.
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However, the most important change is not easy to sees on

the scale of the figure, and this is the fact chat there is a

range (x > -1.4) over which the pressure P computed from (5.6),

satisfies IPI < 0.01. In the same ran$* x )o -1.4, the solid

curve still has only IPI < 0.06. That Is, this portion of the

dashed streamline is much more nearly *fre." then the solid

one. Clearly one, could continue this process to even higher

orders. generating each time an exact solution. with the

property that, as the order of the process increases, P -0

for > 0.

6. Conclusion

We have demonstrated In this paper, both by linear and

non-linear methods, some families of free-surface pressure

distributions that do not generate waves. Sine* these

wave-loe flows can be reversed In direction, they alse

generate candidate shapes for splash-loe bows.
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